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Quantitative Prediction 
 Regression analysis is the statistical name for the 

prediction of one quantitative variable (fasting blood 
glucose level) from another (body mass index) 

 Items of interest include whether there is in fact a 
relationship and what the expected change is in one 
variable when the other changes 
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Assumptions 
 Inference about whether there is a real relationship or 

not is dependent on a number of assumptions, many 
of which can be checked 

 When these assumptions are substantially incorrect, 
alterations in method can rescue the analysis 

 No assumption is ever exactly correct 
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Linearity 
 This is the most important assumption 
 If x is the predictor, and y is the response, then we 

assume that the average response for a given value of x 
is a linear function of x 

 E(y) = a + bx 
 y = a + bx + ε 
 ε is the error or variability 
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 In general, it is important to get the model right, and 
the most important of these issues is that the mean 
function looks like it is specified 

 If a linear function does not fit, various types of curves 
can be used, but what is used should fit the data 

 Otherwise predictions are biased 
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Independence 
 It is assumed that different observations are 

statistically independent 
 If this is not the case inference and prediction can be 

completely wrong 
 There may appear to be a relationship even though 

there is not 
 Randomization and then controlling the treatment 

assignment prevents this in general 
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 Note no relationship between x and y 
 These data were generated as follows: 
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Constant Variance 
 Constant variance, or homoscedacticity, means that 

the variability is the same in all parts of the prediction 
function 

 If this is not the case, the predictions may be on the 
average correct, but the uncertainties associated with 
the predictions will be wrong 

 Heteroscedacticity is non-constant variance 
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Consequences of Heteroscedacticity 
 Predictions may be unbiased (correct on the average) 
 Prediction uncertainties are not correct; too small 

sometimes, too large others 
 Inferences are incorrect (is there any relationship or is 

it random?) 
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Normality of Errors 
 Mostly this is not particularly important 
 Very large outliers can be problematic 
 Graphing data often helps 
 If in a gene expression array experiment, we do 40,000 

regressions, graphical analysis is not possible 
 Significant relationships should be examined in detail 
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Statistical Lab Books 
 You should keep track of what things you try 
 The eventual analysis is best recorded in a file of 

commands so it can later be replicated 
 Plots should also be produced this way, at least in final 

form, and not done on the fly 
 Otherwise, when the paper comes back for review, you 

may not even be able to reproduce your own analysis 
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Fluorescein Example 
 Standard aqueous solutions of fluorescein (in pg/ml) 

are examined in a fluorescence spectrometer and the 
intensity (arbitrary units) is recorded 

 What is the relationship of intensity to concentration 
 Use later to infer concentration of labeled analyte 
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Concentration (pg/ml) 0 2 4 6 8 10 12 

Intensity 2.1 5.0 9.0 12.6 17.3 21.0 24.7 
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> fluor.lm <- lm(intensity ~ concentration) 
> summary(fluor.lm) 
 
Call: 
lm(formula = intensity ~ concentration) 
 
Residuals: 
       1        2        3        4        5        6        7  
 0.58214 -0.37857 -0.23929 -0.50000  0.33929  0.17857  0.01786  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)     1.5179     0.2949   5.146  0.00363 **  
concentration   1.9304     0.0409  47.197 8.07e-08 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 0.4328 on 5 degrees of freedom 
Multiple R-Squared: 0.9978,     Adjusted R-squared: 0.9973  
F-statistic:  2228 on 1 and 5 DF,  p-value: 8.066e-08  
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Measurement and Calibration 
 Essentially all things we measure are indirect 
 The thing we wish to measure produces an observed 

transduced value that is related to the quantity of 
interest but is not itself directly the quantity of 
interest 

 Calibration takes known quantities, observes the 
transduced values, and uses the inferred relationship 
to quantitate unknowns 
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Measurement Examples 
 Weight is observed via deflection of a spring 

(calibrated) 
 Concentration of an analyte in mass spec is observed 

through the electrical current integrated over a peak 
(possibly calibrated) 

 Gene expression is observed via fluorescence of a spot 
to which the analyte has bound (usually not 
calibrated) 
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Correlation 
 Wright peak-flow data set has two measures of peak 

expiratory flow rate for each of 17 patients in l/min. 
 ISwR library, data(wright) 
 Both are subject to measurement error 
 In ordinary regression, we assume the predictor is 

known 
 For two measures of the same thing with no error-free 

gold standard, one can use correlation to measure 
agreement 
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> cor(wright) 
            std.wright mini.wright 
std.wright   1.0000000   0.9432794 
mini.wright  0.9432794   1.0000000 
 
> wplot1() 
----------------------------------------------------- 
File wright.r: 
library(ISwR) 
data(wright) 
attach(wright) 
 
wplot1 <- function() 
{ 
  plot(std.wright,mini.wright,xlab="Standard Flow Meter", 
     ylab="Mini Flow Meter",lwd=2) 
  title("Mini vs. Standard Peak Flow Meters") 
  wright.lm <- lm(mini.wright ~ std.wright) 
  abline(coef(wright.lm),col="red",lwd=2) 
} 
detach(wright) 
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Issues with Correlation 
 For any given relationship between two measurement 

devices, the correlation will depend on the range over 
which the devices are compared. If we restrict the 
Wright data to the range 300-550, the correlation falls 
from 0.94 to 0.77. 

 Correlation only measures linear agreement 
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Measurement with no Gold Standard 
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Calibrated Measurements 
 We produce a calibration curve of the form y = f(x), 

where x is the concentration of the analyte and y is the 
transduced value, such as peak height or peak area in 
mass spectrometry. 

 Often the curve is linear. 
 It is estimated from measurements at a series of 

known concentrations and their responses. 
 A new measurement y produces an estimated 

concentration using x = f-1(y). 
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Limits of Detection 
 The term “limit of detection” is actually ambiguous 

and can mean various things that are often not 
distinguished from each other 

 We will instead define three concepts that are all used 
in this context called the critical level, the minimum 
detectable value, and the limit of quantitation. 

 The critical level is the measurement that is not 
consistent with the analyte being absent 

 The minimum detectable value is the concentration 
that will almost always have a measurement above the 
critical level 
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Examples 
 Serum calcium usually lies in the range 8.5–10.5 mg/dl 

or 2.2–2.7 mmol/L. 
 Suppose the standard deviation of repeat 

measurements is 0.15 mmol/L. 
 Using α = 0.01, zα = 2.326, so the critical level is 

(2.326)(0.15) = 0.35 mmol/L. 
 The MDV is 0.70 mg/L, well out of the physiological 

range. 
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 A test for toluene exposure uses GC/MS to test serum 
samples. 

 The standard deviation of repeat measurements of the 
same serum at low levels of toluene is 0.03 μg/L. 

 The critical level at α = 0.01 is (0.03)(2.326) = 0.070 
μg/L. 

 The MDV is 0.140 μg/L. 
 Unexposed non-smokers 0.4 μg/L  
 Unexposed smokers 0.6 μg/L  
 Chemical workers 2.8 μg/L  
 One EPA standard is < 1 mg/L blood concentration. 
 Toluene abusers may have levels of 0.3–30 mg/L and 

fatalities have been observed at 10–48 mg/L  
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 The EPA has determined that there is no safe level of dioxin 
(2,3,7,8-TCDD (tetrachlorodibenzodioxin)), so the 
Maximum Contaminant Level Goal (MCLG) is 0. 

 The Maximum Contaminant Level (MCL) is based on the 
best existing analytical technology and was set at 30 ppq. 

 EPA Method 1613 uses high-resolution GC/MS and has a 
standard deviation at low levels of 1.2 ppq. 

 The critical level at 1% is (2.326)(1.2ppq) = 2.8 ppq and the 
MDV, called the Method Detection Limit by EPA, is 5.6 
ppq. 

 1 ppq = 1pg/L = 1gm in a square lake 1 meter deep and 10 km 
on a side. 

 The reason why the MCL is set at 30 ppq instead of 2.8 ppq 
will be addressed later. 
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Error Behavior at High Levels 
 For most analytical methods, when the measurements are well 

above the CL, the standard deviation is a constant multiple of 
the concentration 

 The ratio of the standard deviation to the mean is called the 
coefficient of variation (CV), and is often expressed in percents. 

 For example, an analytical method may have a CV of 10%, so 
when the mean is 100 mg/L, the standard deviation is 10 mg/L. 

 When a measurement has constant CV, the log of the 
measurement has approximately constant standard deviation. 

 If we use the natural log, then SD on the log scale is 
approximately CV on the raw scale 
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Zinc Concentration  
 Spikes at 5, 10, and 25 ppb 
 9 or 10 replicates at each concentration 
 Mean measured values, SD, and CV are below 
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Raw 5 10 25 

Mean 4.85 9.73 25.14 

SD 0.189 0.511 0.739 

CV 0.039 0.053 0.029 

Log 1.61 2.30 3.22 

Mean 1.58 2.27 3.22 

SD 0.038 0.055 0.030 
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Summary 
 At low levels, assays tend to have roughly constant 

variance not depending on the mean. This may hold 
up to the MDV or somewhat higher. For low level data, 
analyze the raw data. 

 At high levels, assays tend to have roughly constant 
CV, so that the variance is roughly constant on the log 
scale. For high level data, analyze the logs. 

 We run into trouble with data sets where the analyte 
concentrations vary from quite high to very low 

 This is a characteristic of many gene expression, 
proteomics, and metabolomics data sets. 
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The two-component model 
 The two-component model treats assay data as having 

two sources of error, an additive error that represents 
machine noise and the like, and a multiplicative error. 

 When the concentration is low, the additive error 
dominates. 

 When the concentration is high, the multiplicative 
error dominates. 

 There are transformations similar to the log that can 
be used here. 
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Detection Limits for Calibrated Assays 
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 CL is in units of  the response originally, can be 
translated to units of concentration. 

 MDC is in units of concentration. 



So-Called Limit of Quantitation 
 Consider an assay with a variability near 0 of 29 ppt and a CV at 

high levels of 3.9%. 
 Where is this assay most accurate? 

 Near zero where the SD is smallest? 
 At high levels where the CV is smallest? 

 LOQ is where the CV falls to 20% from infinite at zero to 3.9% at 
large levels. 

 This happens at 148ppt 
 Some use 10*sd(0) = 290 ppt instead 
 CL is at 67 ppt and MDV is at 135 ppt 
 Some say that measurements between 67 and 148 show that 

there is detection, but it cannot be quantified. 
 This is clearly wrong. 
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Conc Mean SD CV 

0 22 28 — 

10 29 2 0.07 

20 81 4 0.05 

100 164 17 0.10 

200 289 5 0.02 

500 555 12 0.02 

1,000 1,038 32 0.03 

2,000 1,981 28 0.01 

5,000 4,851 188 0.04 

10,000 9,734 511 0.05 

25,000 25,146 739 0.03 



Confidence Limits 
 Ignoring uncertainty in the calibration line. 
 Assume variance is well enough estimated to be 

known 
 Use SD2(x) = (28.9)2 + (0.039x)2 

 A measured value of 0 has SD(0) = 28.9, so the 95% CI 
is 0 ± (1.960)(28.9) = 0 ± 57 or [0, 57] 

 A measured value of 10 has SD(10) = 28.9 so the CI is 
[0, 67] 

 A measured value of -10 has a CI of [0, 47] 
 For high levels, make the CI on the log scale 
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Zinc Calibration 
 If we take the spiked concentration and the peak area and 

predict the peak area from the concentration using linear 
regression, we get  
Peak Area = 104.5 + 7.2080 Concentration. 

 The predicted concentration is then 
(Peak Area – 104.5)/7.2080 

 The peak area measurements at 0 true concentration are 
115, 631, 508, 317, 220,  93,  99, 135 

 The predicted concentrations in ppt are then  1.45, 73.04, 
55.97, 29.48, 16.02, −1.60, −0.77, 4.23 

 Note that two of them are negative. These should not be 
reported as < 0 rather than the actual number. 
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Weighted Least Squares 
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Exercise 1 
 The standard deviation of measurements at low level for a  

method for detecting benzene in blood is 52 ng/L. 
 What is the Critical Level if we use a 1% probability criterion?  
 What is the Minimum Detectable Value? 
 If we can use 52 ng/L as the standard deviation, what is a 95% 

confidence interval for the true concentration if the measured 
concentration is 175 ng/L? 

 If the CV at high levels is 12%, about what is the standard 
deviation at high levels for the natural log measured 
concentration? Find a 95% confidence interval for the 
concentration if the measured concentration is 1850 ng/L? 
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Exercise 2 
 Download data on measurement of zinc in water by 

ICP/MS (“Zinc.csv”). Use read.csv() to load. 
 Conduct a regression analysis in which you predict 

peak area from concentration 
 Which of the usual regression assumptions appears to 

be satisfied and which do not? 
 What would the estimated concentration be if the 

peak area of a new sample was 1850? 
 From the blanks part of the data, how big should a 

result be to indicate the presence of zinc with some 
degree of certainty? 

 Try using weighted least squares for a better estimate 
of the calibration curve. Does it seem to make a 
difference? 
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